Respuesta :

In fraction form, it’s 213333^4/ 10,000^4

Answer:

[tex](8^{\frac{2}{3} } )^{4} = 256[/tex]

Step-by-step explanation:

Given

[tex](8^{\frac{2}{3} } )^{4}[/tex]

Required

Simplify

To simplify this, we apply law of indices but first we start by solving the expression in bracket.

8 =2 * 2 * 2

8 = 2³

So, we substitute 2³ for 8

[tex](8^{\frac{2}{3} } )^{4}[/tex] becomes

[tex]((2^{3})^{\frac{2}{3} } )^{4}[/tex]

From law of indices

[tex]a^{n} = (a^{m})^{\frac{n}{m} }[/tex] ==> [tex](a^{m})^{\frac{n}{m} } = a^{n}[/tex]

So, [tex](2^{3})^{\frac{2}{3} } = 2^{2}[/tex]

At this point we have

[tex]((2^{3})^{\frac{2}{3} } )^{4}[/tex] = [tex](2^{2})^{4}[/tex]

Also, from law of indices

[tex](a^{m})^{n} = a^{m.n}[/tex]

So,

[tex]((2^{3})^{\frac{2}{3} } )^{4}[/tex] = [tex](2^{2})^{4}[/tex]

[tex](2^{2})^{4} = 2^{2*4}[/tex]

[tex](2^{2})^{4} = 2^{8}[/tex]

[tex](2^{2})^{4} = 256[/tex]

Hence,

[tex](8^{\frac{2}{3} } )^{4} = 256[/tex]

ACCESS MORE