Answer: [tex](4.36, 5.34)[/tex]
Step-by-step explanation:
Formula to calculate the confidence interval for population mean is given by :-
[tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}[/tex]
, where [tex]\overline{x}[/tex] = sample mean
n= sample size.
z*= Critical value
[tex]\sigma[/tex] = Population standard deviation.
As per given , we have
[tex]\sigma=0.76[/tex]
[tex]\overline{x}=4.85[/tex]
n= 16
From z-table , the critical value for 99% confidence = z*=2.576
Now , 99% confidence interval for true average porosity of a certain seam will be :
[tex]4.85\pm (2.576)\dfrac{0.76}{\sqrt{16}}[/tex]
[tex]4.85\pm (2.576)\dfrac{0.76}{4}[/tex]
[tex]4.85\pm (2.576)(0.19)[/tex]
[tex]4.85\pm (0.48944)[/tex]
[tex]=(4.85-0.48944\ 4.85+0.48944) \\\\=(4.36056,\ 5.33944)\approx(4.36,\ 5.34)[/tex]
Hence, the required 99% CI for the true average porosity of a certain seam = [tex](4.36, 5.34)[/tex]