Answer:
E) [tex]3.57\times 10^3s[/tex]
Explanation:
According to mole concept:
1 mole of an atom contains [tex]6.022\times 10^{23}[/tex] number of particles.
We know that:
Charge on 1 electron = [tex]1.6\times 10^{-19}C[/tex]
So, charge required to deposit 4.00 g of aluminum metal according to the reaction below
[tex]Al^{3+}+3e^-\rightarrow Al[/tex]
is:-
Charge = [tex]\frac{4.00}{26.98}\times 3\times 1.6\times 10^{-19}\times 6.022\times 10^{23}=4.29\times 10^4C[/tex]
To calculate the time required, we use the equation:
[tex]I=\frac{q}{t}[/tex]
where,
I = current passed = 12.0 A
q = total charge = [tex]4.29\times 10^4C[/tex]
t = time required = ?
Putting values in above equation, we get:
[tex]12.0A=\frac{4.29\times 10^4C}{t}\\\\t=\frac{4.29\times 10^4C}{12.0A}=3.57\times 10^3s[/tex]