A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 449 gram setting. It is believed that the machine is underfilling the bags. A 23 bag sample had a mean of 448 grams with a standard deviation of 20. A level of significance of 0.05 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places.

Respuesta :

Answer:

We accetp  H₀

Step-by-step explanation:

Information:

Normal distribution  

Population mean      =   μ₀  = 449

Population standard deviation  σ   unknown

Sample size   n  =  23        n < 30    we use t-student test

so   n  =  23    degree of fredom   df = n  - 1  df  = 23- 1   df = 22

Sample mean    μ =  448

Sample standard deviation   s  =  20

Significance level  α  =  0,05  

1.-Hypothesis Test

Null hypothesis                               H₀     μ₀  =  449

Alternative hypothesis                    Hₐ     μ₀  ≠  449

Problem statement ask for determine decision rule for rejecting the null hypothesis. For rejecting the null hypothesis we have to  get an statistic parameter wich implies  that μ is bigger or smaller than μ₀

2.-Significance level   α  =  0,05  ;  as we have a two tail test

α/2    =  0,025

Then from t - student table for  df =  22   and 0,025 (two tail-test)

t(c)  =  ±  2.074

3.- Compute  t(s)

t(s)   =  (  μ  -  μ₀ )  /  s /√n

plugging in values

t(s)   =  (448  -  449) /  20 /√23    ⇒   t(s)   =  -  1*√23 /20

t(s)   =  - 0.2398

4.-Compare t(c)   and  t(s)

t(s)  <  t(c)         - 0.2398  <  - 2.074

Therefore  t(s)  in inside acceptance region.  We accept  H₀

ACCESS MORE