Respuesta :

Answer:

Therefore,

Distance between XY is 878 ft and YB is 524 ft.

Step-by-step explanation:

Given:

BW = 1612 ft

∠ Y = 72°

∠ X = 49°

To Find:

XY = ?

YB = ?

Solution:

In right angle Triangle Δ WBY Tangent identity,

[tex]\tan Y= \frac{\textrm{side opposite to angle Y}}{\textrm{side adjacent to angle Y}}[/tex]

Substituting we get

[tex]\tan 72= \frac{WB}{YB}=\frac{1612}{BY}[/tex]

[tex]\therefore BY=\frac{1612}{3.077}=523.88=524\ ft...(approximate)[/tex]

Similarly,

In right angle Triangle Δ WBX Tangent identity,

[tex]\tan X= \frac{\textrm{side opposite to angle X}}{\textrm{side adjacent to angle X}}[/tex]

Substituting we get

[tex]\tan 49= \frac{WB}{XB}=\frac{1612}{XB}[/tex]

[tex]\therefore XB=\frac{1612}{1.15}=1401.73=1402\ ft...(approximate)[/tex]

Now For

[tex]XB = XY +BY[/tex].............Addition Property

Substituting we get

[tex]1402 = XY +524\\\\\therefore XY=1402-524=878\ ft[/tex]

Therefore

Distance between XY is 878 ft and YB is 524 ft.

ACCESS MORE
EDU ACCESS
Universidad de Mexico