Answer:
The Co ordinates of Point Q is (0.33,0).
Step-by-step explanation:
Given,
Co ordinates of Point A = (3,4)
Co ordinates of Point B = (-1,-2)
We have to find out the co ordinates of point Q that divides the line segment in the ratio of 4:2.
Solution,
For finding the co ordinates of Q, we use the section formula.
[tex]Q(x,y)=(\frac{mx_2+nx_1}{m+n}) (\frac{my_2+ny_1}{m+n})[/tex]
Here,
[tex]x_1=3\ \ \ x_2=-1\\y_1=4\ \ \ y_2=-2\\m=4\ \ and\ \ n=2[/tex]
Now we substitute the given values and get;
[tex]Q(x,y)=(\frac{4\times-1+2\times3}{4+2}) (\frac{4\times-2+2\times4}{4+2})\\\\Q(x,y)=(\frac{-4+6}{6})(\frac{-8+8}{6})\\\\Q(x,y)=(\frac{2}{6})(\frac{0}{6})\\\\Q(x,y)=(0.33,0)[/tex]
Hence The Co ordinates of Point Q is (0.33,0).