Solve the system of equations.

Answer:
x = 6
y = -7
Step-by-step explanation:
The two equations are:
[tex]$ 10x - 3y = 81 \hspace{20mm} \hdots (1) $[/tex]
[tex]$ -5x - 7y = 19 \hspace{20mm} \hdots (2) $[/tex]
Multiplying equation (2) by 2, we get:
[tex]$ -10x - 14y = 38 $[/tex]
Adding this equation and Equation (1), we get:
[tex]$ - 17 y = 119 $[/tex]
⇒ y = - 7
Substituting the value of y = -7 in Equation (1), we get:
10x = 81 + 3(-7)
⇒ 10x = 81 - 21 = 60
⇒ x = 6
Therefore, the solution to the equations is: (x, y) = (6, -7).