Answer:
30643 J
Explanation:
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
t = Time taken = 1 ns
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
[tex]E_0[/tex] = Maximum electric field strength = [tex]1.52\times 10^{11}\ V/m[/tex]
A = Area = [tex]1\ mm^2[/tex]
Magnitude of magnetic field is given by
[tex]B_0=\dfrac{E_0}{c}\\\Rightarrow B_0=\dfrac{1.52\times 10^{11}}{3\times 10^8}\\\Rightarrow B_0=506.67\ T[/tex]
Intensity is given by
[tex]I=\dfrac{cB_0^2}{2\mu_0}\\\Rightarrow I=\dfrac{3\times 10^8\times 506.67^2}{2\times 4\pi \times 10^{-7}}\\\Rightarrow I=3.0643\times 10^{19}\ W/m^2[/tex]
Power, intensity and time have the relation
[tex]E=IAt\\\Rightarrow E=3.0643\times 10^{19}\times 1\times 10^{-6}\times 1\times 10^{-9}\\\Rightarrow E=30643\ J[/tex]
The energy it delivers is 30643 J