Give conditions on the constants a, b and c that ensure that the flux integral integral_S F middot dS, where F = ai + bj + ck and S is the lower half of the unit sphere centered at the origin and oriented downward, is positive. (For each, if there is no restriction on the constant select = and enter anything for the value.)

Respuesta :

Parameterize [tex]S[/tex] by

[tex]\vec s(u,v)=\cos u\sin v\,\vec\imath+\sin u\sin v\,\vec\jmath+\cos v\,\vec k[/tex]

with [tex]0\le u\le2\pi[/tex] and [tex]\frac\pi2\le v\le\pi[/tex]. The downward normal vector to [tex]S[/tex] is

[tex]\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=\cos u\sin^2v\,\vec\imath+\sin u\sin^2v\,\vec\jmath+\cos v\sin v\,\vec k[/tex]

Then the flux of [tex]\vec F[/tex] across [tex]S[/tex] is

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\int_{\pi/2}^\pi\int_0^{2\pi}(a\,\vec\imath+b\,\vec\jmath+c\,\vec k)\cdot\left(\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}\right)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_{\pi/2}^\pi\int_0^{2\pi}a\cos u\sin^2v+b\sin u\sin^2v+c\cos v\sin v\,\mathrm du\,\mathrm dv[/tex]

Only the last term of the integrand contributes to the integral; we have

[tex]\displaystyle\int_{\pi/2}^\pi\cos v\sin v=\frac12\int_{\pi/2}^\pi\sin(2v)\,\mathrm dv=-\frac12[/tex]

so that the flux is [tex]-\frac c2[/tex]. In order for this to be positive, we must have [tex]c<0[/tex]. [tex]a[/tex] and [tex]b[/tex] can be any constants.

ACCESS MORE