Answer:
Part 1) [tex]c=12.14\ units[/tex]
Part 2) [tex]m\angle A=41.78^o[/tex]
Part 3) [tex]m\angle B=74.22^o[/tex]
Step-by-step explanation:
step 1
Find the measure of side c
Applying the law of cosines
[tex]c^2=a^2+b^2-2(a)(b)cos(C)[/tex]
we have
[tex]a=9\ units\\b=13\ units\\C=64^o[/tex]
substitute
[tex]c^2=9^2+13^2-2(9)(13)cos(64^o)[/tex]
[tex]c^2=81+169-234cos(64^o)[/tex]
[tex]c^2=250-234cos(64^o)[/tex]
[tex]c^2=147.4212[/tex]
[tex]c=12.14\ units[/tex]
step 2
Find the measure of angle A
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
substitute the given values
[tex]\frac{9}{sin(A)}=\frac{12.14}{sin(64^o)}[/tex]
solve for sin(A)
[tex]sin(A)=\frac{sin(64^o)}{12.14}(9)[/tex]
[tex]sin(A)=0.6663[/tex]
[tex]m\angle A=sin^{-1}(0.6663)=41.78^o[/tex]
step 3
Find the measure of angle B
we know that
The sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]m\angle A+m\angle B+m\angle C=180^o[/tex]
substitute the given values
[tex]41.78^o+m\angle B+64^o=180^o[/tex]
[tex]m\angle B+105.78^o=180^o[/tex]
[tex]m\angle B=180^o-105.78^o[/tex]
[tex]m\angle B=74.22^o[/tex]