Respuesta :

Answer:

Part 1) [tex]c=12.14\ units[/tex]

Part 2) [tex]m\angle A=41.78^o[/tex]

Part 3) [tex]m\angle B=74.22^o[/tex]

Step-by-step explanation:

step 1

Find the measure of side c

Applying the law of cosines

[tex]c^2=a^2+b^2-2(a)(b)cos(C)[/tex]

we have

[tex]a=9\ units\\b=13\ units\\C=64^o[/tex]

substitute

[tex]c^2=9^2+13^2-2(9)(13)cos(64^o)[/tex]

[tex]c^2=81+169-234cos(64^o)[/tex]

[tex]c^2=250-234cos(64^o)[/tex]

[tex]c^2=147.4212[/tex]

[tex]c=12.14\ units[/tex]

step 2

Find the measure of angle A

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]

substitute the given values

[tex]\frac{9}{sin(A)}=\frac{12.14}{sin(64^o)}[/tex]

solve for sin(A)

[tex]sin(A)=\frac{sin(64^o)}{12.14}(9)[/tex]

[tex]sin(A)=0.6663[/tex]

[tex]m\angle A=sin^{-1}(0.6663)=41.78^o[/tex]

step 3

Find the measure of angle B

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]m\angle A+m\angle B+m\angle C=180^o[/tex]

substitute the given values

[tex]41.78^o+m\angle B+64^o=180^o[/tex]

[tex]m\angle B+105.78^o=180^o[/tex]

[tex]m\angle B=180^o-105.78^o[/tex]

[tex]m\angle B=74.22^o[/tex]    

ACCESS MORE