Answer:
[tex]\Delta S_u=2.1429\ J.K^{-1}[/tex]
[tex]W_c=416.67\ J[/tex]
Explanation:
Given:
temperature of source reservoir, [tex]T_H=600\ K[/tex]
temperature of sink reservoir, [tex]T_L=350\ K[/tex]
energy absorbed from the source, [tex]Q_{in}=1000\ J[/tex]
work done, [tex]W=250\ J[/tex]
a.
Now change in entropy of the surrounding:
[tex]\Delta S_u=\frac{dQ_L}{T_L}[/tex]
Since heat engine is a device that absorbs heat from a high temperature reservoir and does some work giving out heat in the universe as the byproduct.
[tex]\Delta S_u=\frac{Q_H-W}{T_L}[/tex]
[tex]\Delta S_u=\frac{1000-250}{350}[/tex]
[tex]\Delta S_u=2.1429\ J.K^{-1}[/tex]
b.
We know Carnot efficiency is given as:
[tex]\eta_c=1-\frac{T_L}{T_H}[/tex]
[tex]\eta_c=1-\frac{350}{600}[/tex]
[tex]\eta_c=0.4167[/tex]
Now the Carnot work done:
[tex]W_c=Q_H\times \eta_c[/tex]
[tex]W_c=1000\times 0.4167[/tex]
[tex]W_c=416.67\ J[/tex] .......................(1)
c.
From eq. (1) we have the Carnot work, so the difference:
[tex]\Delta W=W_c-W[/tex]
[tex]\Delta W=416.67-250[/tex]
[tex]\Delta W=166.67\ J[/tex]
Now, we find:
[tex]T_L.\Delta S_u=350\times 2.1429[/tex]