Answer:
$16.74
Explanation:
First , find the dividend per year;
D1 = 2.10(1.0.24) = 2.1504
D2 = 2.1504(1.024) = 2.2020
D3 = 2.2020(1.024) = 2.2548
D4 = 2.2548(1.024) = 2.3089
D5 = 2.3089(1.024) = 2.3643
D6 = 2.3643(1.02) = 2.4116
Next, find the present value of the dividends;
PV (of D1) = 2.1504/ 1.15 = 1.8699
PV (of D2) = 2.2020/ 1.15² = 1.6650
PV (of D3) = 2.2548/ 1.15³ = 1.4826
PV (of D4) = 2.3089/ (1.15^4) = 1.3201
PV (of D5) = 2.3643/ (1.15^5) = 1.1755
PV (of D6 onwards)[tex]= \frac{\frac{2.4116}{0.15-0.02} }{1.15^{5} } \\ \\ =\frac{18.5508}{2.0114}[/tex]
PV (of D6 onwards) = 9.2228
Next, sum up the PVs to find the price of the stock;
= 1.8699 + 1.6650 + 1.4826 + 1.3201 + 1.1755 + 9.2228
= 16.7359
Therefore the value of one share is $16.74