Answer:
[tex]\Delta P=1581357.92\ Pa[/tex]
Explanation:
Given:
Now, flow velocity in hose:
[tex]v_h=\frac{\dot V}{\pi.D^2\div 4}[/tex]
[tex]v_h=\frac{0.04\times 4}{\pi\times 0.09^2}[/tex]
[tex]v_h=6.2876\ m.s^{-1}[/tex]
Now, flow velocity in nozzle:
[tex]v_n=\frac{\dot V}{\pi.d^2\div 4}[/tex]
[tex]v_n=\frac{0.04\times 4}{\pi\times 0.03^2}[/tex]
[tex]v_n=56.5884\ m.s^{-1}[/tex]
We know the Bernoulli's equation:
[tex]\frac{P_1}{\rho.g}+\frac{v_1^2}{2g}+Z_1=\frac{P_2}{\rho.g}+\frac{v_2^2}{2g}+Z_2[/tex]
when the two points are at same height then the eq. becomes
[tex]\frac{P_1}{\rho.g}+\frac{v_1^2}{2g}=\frac{P_2}{\rho.g}+\frac{v_2^2}{2g}[/tex]
[tex]\Delta P=\frac{\rho(v_n^2-v_h^2)}{2}[/tex]
[tex]\Delta P=\frac{1000(56.5884^2-6.2876^2)}{2}[/tex]
[tex]\Delta P=1581357.92\ Pa[/tex]