What is the pressure drop due to the bernoulli effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 l/s?

Respuesta :

Answer:

[tex]\Delta P=1581357.92\ Pa[/tex]

Explanation:

Given:

  • diameter of hose pipe, [tex]D=0.09\ m[/tex]
  • diameter of nozzle, [tex]d=0.03\ m[/tex]
  • volume flow rate, [tex]\dot{V}=40\ L.s^{-1}=0.04\ m^3.s^{-1}[/tex]

Now, flow velocity in hose:

[tex]v_h=\frac{\dot V}{\pi.D^2\div 4}[/tex]

[tex]v_h=\frac{0.04\times 4}{\pi\times 0.09^2}[/tex]

[tex]v_h=6.2876\ m.s^{-1}[/tex]

Now, flow velocity in nozzle:

[tex]v_n=\frac{\dot V}{\pi.d^2\div 4}[/tex]

[tex]v_n=\frac{0.04\times 4}{\pi\times 0.03^2}[/tex]

[tex]v_n=56.5884\ m.s^{-1}[/tex]

We know the Bernoulli's equation:

[tex]\frac{P_1}{\rho.g}+\frac{v_1^2}{2g}+Z_1=\frac{P_2}{\rho.g}+\frac{v_2^2}{2g}+Z_2[/tex]

when the two points are at same height then the eq. becomes

[tex]\frac{P_1}{\rho.g}+\frac{v_1^2}{2g}=\frac{P_2}{\rho.g}+\frac{v_2^2}{2g}[/tex]

[tex]\Delta P=\frac{\rho(v_n^2-v_h^2)}{2}[/tex]

[tex]\Delta P=\frac{1000(56.5884^2-6.2876^2)}{2}[/tex]

[tex]\Delta P=1581357.92\ Pa[/tex]

ACCESS MORE