Answer:
[tex]\Delta d=0.9743\ m[/tex]
Explanation:
Given:
Apparent distance from the normal projection at the bottom of entrance at air-water surface to the fish:
[tex]d'=h.tan\ \theta[/tex]
[tex]d'=2\times tan\ 50[/tex]
[tex]d'=2.3835\ m[/tex]
Now according to Snell's Law:
[tex]n=\frac{sin\ i}{sin\ r}[/tex]
[tex]1.33=\frac{sin\ 50}{sin\ r}[/tex]
[tex]\angle r=35.168^{\circ}[/tex]
Now the actual distance of the fish from the bottom surface at the normal:
[tex]d=h.tan\ \theta[/tex]
[tex]d=2\times tan\ 35.168[/tex]
[tex]d=1.4092\ m[/tex]
Now distance between bullet hole and fish:
[tex]\Delta d=d'-d[/tex]
[tex]\Delta d=2.3835-1.4092[/tex]
[tex]\Delta d=0.9743\ m[/tex]