A catfish is spotted at the bottom of a creek. The depth of the water is 2 m. A hunter (with no knowledge of optics) fires a rifle shot, directly aimed at the catfish. The bullet strikes the water at an angle of 40° to the water. Assume that the bullet is not deflected by the air/water interface, what is the distance from the bullet hole at the bottom of the creek to the catfish? Water: n=1.33. (Answer should be 0.97 m)

Respuesta :

Answer:

[tex]\Delta d=0.9743\ m[/tex]

Explanation:

Given:

  • depth of fish, [tex]h=2\ m[/tex]
  • angle of incidence,[tex]\angle i=90-40=50^{\circ}[/tex]
  • refractive index of water, [tex]n=1.33[/tex]

Apparent distance from the normal projection at the bottom of entrance at air-water surface to the fish:

[tex]d'=h.tan\ \theta[/tex]

[tex]d'=2\times tan\ 50[/tex]

[tex]d'=2.3835\ m[/tex]

Now according to Snell's Law:

[tex]n=\frac{sin\ i}{sin\ r}[/tex]

[tex]1.33=\frac{sin\ 50}{sin\ r}[/tex]

[tex]\angle r=35.168^{\circ}[/tex]

Now the actual distance of the fish from the bottom surface at the normal:

[tex]d=h.tan\ \theta[/tex]

[tex]d=2\times tan\ 35.168[/tex]

[tex]d=1.4092\ m[/tex]

Now distance between bullet hole and fish:

[tex]\Delta d=d'-d[/tex]

[tex]\Delta d=2.3835-1.4092[/tex]

[tex]\Delta d=0.9743\ m[/tex]

Ver imagen creamydhaka
ACCESS MORE