Answer:
a) Lower Limit = 24.52
b) Upper Limit = 36.28
c) Error bound = 5.88
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 33.2
Sample mean, [tex]\bar{x}[/tex] = 30.4
Sample size, n = 25
Alpha, α = 0.05
Population standard deviation, σ = 15
95% Confidence interval:
[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]z_{critical}\text{ at}~\alpha_{0.05} = \pm 1.96[/tex]
[tex]30.4 \pm 1.96(\frac{15}{\sqrt{25}} ) = 30.4 \pm 5.88 = (24.52,36.28)[/tex]
a) Lower Limit = 24.52
b) Upper Limit = 36.28
c) Error bound
[tex]\text{Margin of error} = z_{critical}\times \displaystyle\frac{\sigma}{\sqrt{n}}\\\\= 1.96\times \frac{15}{\sqrt{25}} = 5.88[/tex]