Respuesta :
Answer:
a) [tex]X_{cm} = 60m[/tex]
b) I = [tex]5.4*10^8Kg*m^2[/tex]
c) [tex]T= 4.5*10^6[/tex] N*m
d) a = [tex]8.3*10^{-3}rad/s^2[/tex]
e) W= 0.25 rad/s
Explanation:
a) we know that:
[tex]X_{cm} = \frac{m_1x_1+m_2x_2}{m1+m2}[/tex]
where [tex]X_cm[/tex] is the ubicaton of the center of mass, [tex]m_1[/tex] the mass of the first rocket, [tex]x_1[/tex] its distances with the rocket 1, [tex]m_2[/tex] the mass of the second rocket and [tex]x_2[/tex] its distance with the rocket 1. So, replacing values, we get:
[tex]X_{cm} = \frac{(100,000kg)(0)+(200,000kg)(90m)}{100,000kg+200,000kg}[/tex]
[tex]X_{cm} = 60m[/tex]
So, the center of mass is at 60m from the rocket 1.
b) we know that:
[tex]I = M_1R_1^2 +M_2R_2^2[/tex]
where I is the moment of inertia, [tex]M_1[/tex] is the mass of the rocket 1, [tex]R_1[/tex] its distance from the center of mass, [tex]M_2[/tex] the mass of the second rocket and [tex]R_2[/tex] the distance between the rocket 2 and the center of mass. So, replacing values, we get:
[tex]I = (100,000kg)(60m)^2 +(200,000kg)(30m)^2[/tex]
I = [tex]5.4*10^8Kg*m^2[/tex]
c) We know that:
T = Fr
where T is the net torque, F is the force and r is the distance between the rocket and the radius. Then:
[tex]FR_1+FR_2 = T[/tex]
Replacing values, we get:
50,000N(60m)+50,000N(30m) = T
[tex]T= 4.5*10^6[/tex] N*m
d) We know that:
T = Ia
where T is the net torque, I the moment of inertia and a is the angular aceleration. So, replacing values, we get:
[tex]4.5*10^6Nm = 5.4*10^8Kg*m^2a[/tex]
solving for a:
a = [tex]8.3*10^{-3}rad/s^2[/tex]
e) Finally, using:
W = at
where W is the angular velocity, a is the angular aceleration and t is the time.
Then, replacing values. we get:
W = ([tex]8.3*10^{-3}rad/s^2[/tex])(30s)
W = 0.25 rad/s