Answer: 0.1653
Step-by-step explanation:
The Poisson distribution formula for probability is given by :-
[tex]P(X=x)=\dfrac{e^{-\lambda}\lambda^x}{x!}[/tex]
, where [tex]\lambda[/tex]= mean of the distribution and x is the number of successes .
Given a Poisson random variable X, where the average number of successes occurring in a specified interval is 1.8.
i.e. [tex]\lambda=1.8[/tex]
Then, [tex]P(X=0)=\dfrac{e^{-1.8}(1.8)^0}{0!}[/tex]
[tex]P(X=0)=\dfrac{e^{-1.8}(1)}{1}[/tex]
Put value of e= 2.71828
[tex]=(2.71828)^{-1.8}\\\\=0.165298888222\approx0.1653[/tex]
Hence, the correct answer is 0.1653 .