Given a Poisson random variable X, where the average number of successes occurring in a specified interval is 1.8, then P(X = 0) is:
-1.8
-1.3416
-0.1653
-6.05

Respuesta :

Answer: 0.1653

Step-by-step explanation:

The Poisson distribution formula for probability is given by :-

[tex]P(X=x)=\dfrac{e^{-\lambda}\lambda^x}{x!}[/tex]

, where [tex]\lambda[/tex]= mean of the distribution and  x is the number of successes .

Given a Poisson random variable X, where the average number of successes occurring in a specified interval is 1.8.

i.e. [tex]\lambda=1.8[/tex]

Then, [tex]P(X=0)=\dfrac{e^{-1.8}(1.8)^0}{0!}[/tex]

[tex]P(X=0)=\dfrac{e^{-1.8}(1)}{1}[/tex]

Put value of e= 2.71828

[tex]=(2.71828)^{-1.8}\\\\=0.165298888222\approx0.1653[/tex]

Hence, the correct answer is 0.1653  .

ACCESS MORE