Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S.

In other words, find the flux of F across S.

For closed surfaces, use the positive (outward) orientation.

F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 3 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has upward orientation

Respuesta :

Answer:

2.794

Step-by-step explanation:

Recall that if G(x,y) is a parametrization of the surface S and F and G are smooth enough then  

[tex]\bf \displaystyle\iint_{S}FdS=\displaystyle\iint_{R}F(G(x,y))\cdot(\displaystyle\frac{\partial G}{\partial x}\times\displaystyle\frac{\partial G}{\partial y})dxdy[/tex]

F can be written as

F(x,y,z) = (xy, yz, zx)

and S has a straightforward parametrization as

[tex]\bf G(x,y) = (x, y, 3-x^2-y^2)[/tex]

with 0≤ x≤1 and  0≤ y≤1

So

[tex]\bf \displaystyle\frac{\partial G}{\partial x}= (1,0,-2x)\\\\\displaystyle\frac{\partial G}{\partial y}= (0,1,-2y)\\\\\displaystyle\frac{\partial G}{\partial x}\times\displaystyle\frac{\partial G}{\partial y}=(2x,2y,1)[/tex]

we also have

[tex]\bf F(G(x,y))=F(x, y, 3-x^2-y^2)=(xy,y(3-x^2-y^2),x(3-x^2-y^2))=\\\\=(xy,3y-x^2y-y^3,3x-x^3-xy^2)[/tex]

and so

[tex]\bf F(G(x,y))\cdot(\displaystyle\frac{\partial G}{\partial x}\times\displaystyle\frac{\partial G}{\partial y})=(xy,3y-x^2y-y^3,3x-x^3-xy^2)\cdot(2x,2y,1)=\\\\=2x^2y+6y^2-2x^2y^2-2y^4+3x-x^3-xy^2[/tex]

we just have then to compute a double integral of a polynomial on the unit square 0≤ x≤1 and  0≤ y≤1

[tex]\bf \displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}(2x^2y+6y^2-2x^2y^2-2y^4+3x-x^3-xy^2)dxdy=\\\\=2\displaystyle\int_{0}^{1}x^2dx\displaystyle\int_{0}^{1}ydy+6\displaystyle\int_{0}^{1}dx\displaystyle\int_{0}^{1}y^2dy-2\displaystyle\int_{0}^{1}x^2dx\displaystyle\int_{0}^{1}y^2dy-2\displaystyle\int_{0}^{1}dx\displaystyle\int_{0}^{1}y^4dy+\\\\+3\displaystyle\int_{0}^{1}xdx\displaystyle\int_{0}^{1}dy-\displaystyle\int_{0}^{1}x^3dx\displaystyle\int_{0}^{1}dy-\displaystyle\int_{0}^{1}xdx\displaystyle\int_{0}^{1}y^2dy[/tex]

=1/3+2-2/9-2/5+3/2-1/4-1/6 = 2.794

ACCESS MORE