Answer:
[tex]K_f[/tex] = 351.84 J
Explanation:
Using the conservation of energy K:
[tex]E_i = E_f[/tex]
so:
[tex]\frac{1}{2}mv^2 = K_f + mgh[/tex]
where m is the mass, v the initial velocity, [tex]K_f[/tex] is the kinetic energy of the mass as it clears the fence, g the gravity and h the altitude.
Then, replacing values, we get:
[tex]\frac{1}{2}(1.2kg)(30m/s)^2 = K_f + (1.2kg)(9.8m/s^2)(16m)[/tex]
solving for [tex]K_f[/tex]:
[tex]K_f[/tex] = 351.84 J