Answer:
0.3847 m/s
Explanation:
[tex]I[/tex] = Intensity = [tex]\dfrac{P}{A}=\dfrac{P}{\pi r^2}[/tex]
d = Diameter = 20 cm
r = Radius = [tex]\dfrac{d}{2}=\dfrac{20}{2}=10\ cm[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
s = Distance = 100 m
P = Power = 22 MW
Pressure due to the laser is given by
[tex]P_r=\dfrac{I}{c}\\\Rightarrow P_r=\dfrac{P}{Ac}\\\Rightarrow P_r=\dfrac{P}{\pi r^2c}\\\Rightarrow P_r=\dfrac{22\times 10^{6}}{\pi 0.1^2\times 3\times 10^8}\\\Rightarrow P_r=2.33427\ N/m^2[/tex]
Force is given by
[tex]F=P_rA\\\Rightarrow F=2.33427\times \pi 0.1^2\\\Rightarrow F=0.07333\ N[/tex]
Acceleration is given by
[tex]a=\dfrac{F}{m}\\\Rightarrow a=\dfrac{0.07333}{99}\\\Rightarrow a=0.00074\ m/s^2[/tex]
Speed of the block would be
[tex]v=\sqrt{2as}\\\Rightarrow v=\sqrt{2\times 0.00074\times 100}\\\Rightarrow v=0.3847\ m/s[/tex]
The speed of the block is 0.3847 m/s