Respuesta :

Answer:

The polynomial for the sum of the shaded  [tex]\pi[/tex] r² - 20 [tex]\pi[/tex]

Step-by-step explanation:

Given as :

The figure is shown which is of concentric circle with radius B , A , r

The radius B = 4 unit

The radius A = 6 unit

Let The sum of shaded portion = x unit

Now, The circumference of circle = 2 [tex]\pi[/tex] R , where R is the radius

So, for circle with radius B.

The circumference = 2 [tex]\pi[/tex] R = 2 [tex]\pi[/tex] B

Or, The circumference = 2 [tex]\pi[/tex] × 4 = 8 [tex]\pi[/tex]

Similarly

For circle with radius A.

The circumference = 2 [tex]\pi[/tex]R = 2 [tex]\pi[/tex] A

Or, The circumference = 2 [tex]\pi[/tex] × 6 = 12 [tex]\pi[/tex]

Now, The area of circle with radius r is

Area = [tex]\pi[/tex] ×radius × radius

Or, Area = [tex]\pi[/tex] r²

Now,

The sum of shaded region area = The area of circle with radius r - ( The circumference with radius B + The circumference with radius A )

Or, The sum of shaded region area =  [tex]\pi[/tex] r² - ( 8 [tex]\pi[/tex] + 12 [tex]\pi[/tex] )

Or,  The sum of shaded region area =  [tex]\pi[/tex] r² - 20 [tex]\pi[/tex]

Hence The polynomial for the sum of the shaded area is [tex]\pi[/tex] r² - 20 [tex]\pi[/tex]  Answer

ACCESS MORE
EDU ACCESS