Respuesta :
Answer:
[tex]\dfrac{I}{I_0}=\dfrac{3}{8}[/tex]
Explanation:
Given that
Angle ,θ = 30°
From Malus law,Intensity given as
[tex]I=\dfrac{I_0}{2}cos^2\theta[/tex]
Io=Intensity of unpolarized light
I=Intensity of emerging light
Now by putting the value of angle
[tex]I=\dfrac{I_0}{2}cos^2\theta[/tex]
[tex]I=\dfrac{I_0}{2}cos^230^{\circ}[/tex]
We know that
[tex]cos30^{\circ}=\dfrac{\sqrt{3}}{2}[/tex]
[tex]I=\dfrac{I_0}{2}\times \dfrac{3}{4}[/tex]
[tex]\dfrac{I}{I_0}=\dfrac{3}{8}[/tex]
Therefore ratio will be [tex]\dfrac{3}{8}[/tex]
Answer:
Ratio of the intensity of emerging light[tex]$\frac{I}{I_{0}}=\frac{3}{8}$[/tex]
Explanation:
Given:
Angle,[tex]$\theta=30^{\circ}$[/tex]
Step 1:
According to Malus law,
Intensity,
[tex]$I=\frac{I_{0}}{2} \cos ^{2} \theta$[/tex]
[tex]l_{0} =[/tex]Intensity of unpolarized light
[tex]l=[/tex]Intensity of emerging light
Step 2:
Put the value of angle
[tex]$I=\frac{I_{0}}{2} \cos ^{2} \theta$[/tex]
[tex]$I=\frac{I_{0}}{2} \cos ^{2} 30^{\circ}$[/tex]
We know,
[tex]$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$[/tex]
[tex]$I=\frac{I_{0}}{2} \times \frac{3}{4}$[/tex]
So, the intensity of the ratio
[tex]$\frac{I}{I_{0}}=\frac{3}{8}$[/tex]
Therefore, the ratio of the intensity of light is [tex]$\frac{3}{8}$[/tex]
To learn more, refer:
https://brainly.com/question/3917542