Answer:
Part A) Not collide
Part B) k = 4
Part C) Particle B is moving fast.
Step-by-step explanation:
Two particles move in the xy-plane. At time, t
Position of particle A:-
[tex]x(t)=5t-5[/tex]
[tex]y(t)=2t-k[/tex]
Position of particles B:-
[tex]x(t)=4t[/tex]
[tex]y(t)=t^2-2t+1[/tex]
Part A) For k = -6
Position particle A, (5t-5,2t+6)
Position of particle B, [tex](4t,t^2-2t-1)[/tex]
If both collides then x and y coordinate must be same
Therefore,
5t - 5 = 4t
t = 5
[tex]2t+6=t^2-2t-1[/tex]
[tex]t^2-4t-7=0[/tex]
[tex]t=-1.3,5.3[/tex]
The value of t is not same. So, k = -6 A and B will not collide.
Part B) If both collides then x and y coordinate must be same
5t - 5 = 4t
t = 5
[tex]2t-k=t^2-2t-1[/tex]
Put t = 5
[tex]10-k=25-10-1[/tex]
[tex]k=4[/tex]
Hence, if k = 4 then A and B collide.
Part C)
Speed of particle A, [tex]\dfrac{dA}{dt}[/tex]
[tex]\dfrac{dA}{dt}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}[/tex]
[tex]\dfrac{dA}{dt}=2\cdot \dfrac{1}{5}\approx 0.4[/tex]
Speed of particle B, [tex]\dfrac{dB}{dt}[/tex]
[tex]\dfrac{dB}{dt}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}[/tex]
[tex]\dfrac{dB}{dt}=2t-2\cdot \dfrac{1}{4}[/tex]
At t = 5
[tex]\dfrac{dB}{dt}=10-2\cdot \dfrac{1}{4}=2[/tex]
Hence, Particle B moves faster than particle A