Identify the group of elements that corresponds to each of the following generalized electron configurations and indicate the number of unpaired electrons for each: (a) [Noble gas] ns^2 np^5 (b) [noble gas] ns^2 (n-1)d^2 (c) [noble gas] ns^2 (n-1)d^10 np^1 (d)[noble gas] ns^2 (n-2)f^6

Respuesta :

Answer:

(a) [Noble gas] ns² np⁵: Number of unpaired electron is 1 and belongs to group 17 i.e. halogen group of the periodic table.

(b) [noble gas] ns² (n-1)d²: Number of unpaired electron is 2 and belongs to group 4 of the periodic table.

(c) [noble gas] ns² (n-1)d¹⁰ np¹: Number of unpaired electron is 1 and belongs to group 13 of the periodic table.

(d)[noble gas] ns² (n-2)f⁶ : Number of unpaired electron is 6 and belongs to group 8 of the periodic table.

Explanation:

In the Periodic table, the chemical elements are arranged in 7 rows, called periods and 18 columns, called groups. They are organized in increasing order of atomic numbers.

(a) [Noble gas] ns² np⁵

As the total number of electrons in the p-orbital is 5. Therefore, the number of unpaired electron is 1.

This element has 2 electrons in ns orbital and 5 electrons in np orbital. So there are 7 valence electrons.

Therefore, this element belongs to the group 17 i.e. halogen group of the periodic table.

(b) [noble gas] ns² (n-1)d²

As the total number of electrons in the d-orbital is 2. Therefore, the number of unpaired electrons is 2.

This element has 2 electrons in ns orbital and 2 electrons in (n-1)d orbital. So there are 4 valence electrons.

Therefore, this element belongs to the group 4 of the periodic table.

(c) [noble gas] ns² (n-1)d¹⁰ np¹

As the total number of electrons in the p-orbital is 1. Therefore, the number of unpaired electron is 1.

This element has 2 electrons in ns orbital and 1 electron in np orbital. So there are 3 valence electrons.

Therefore, this element belongs to the group 13 of the periodic table.

(d)[noble gas] ns² (n-2)f⁶

As the total number of electrons in the f-orbital is 6. Therefore, the number of unpaired electron is 6.

This element has 2 electrons in ns orbital and 6 electrons in (n-2)f orbital. So there are 8 valence electrons.

Therefore, this element belongs to the group 8 of the periodic table.

The group of elements that corresponds to each of the following are:

(a) [Noble gas] ns² np⁵: Number of unpaired electron is 1 and belongs to group 17.

(b) [noble gas] ns² (n-1)d²: Number of unpaired electron is 2 and belongs to group 4.

(c) [noble gas] ns² (n-1)d¹⁰ np¹:Number of unpaired electron is 1 and belongs to group 13.

(d) [noble gas] ns² (n-2)f⁶ : Number of unpaired electron is 6 and belongs to group 8.

Periodic Table:

Periods are horizontal rows (across) the periodic table, while groups are vertical columns (down) the table. The elements are arranged in increasing order of their atomic number.

Group 17 is known as Halogen group, it has only on unpaired electron that means it needs one electron more to complete its octet or attain noble gas configuration. Group 4 is the second group of transition metals in the periodic table. Group 13, is also known as Boron group and it lies in p block elements. Group 8, is also known as Iron family.

Find more information about Periodic table here: brainly.com/question/749030