contestada

50 point for this question:
Find values of a and b that make the following equality into identity:

50 point for this question Find values of a and b that make the following equality into identity class=
50 point for this question Find values of a and b that make the following equality into identity class=

Respuesta :

Answer:

1) The values of 'a' and 'b' are [tex]$ \frac{3}{4} $[/tex] and [tex]$ \frac{3}{4} $[/tex] respectively.

2) The values of 'a' and 'b' are '3' and '-3' respectively.

Step-by-step explanation:

1) Given: [tex]$ \frac{3x}{(x - 2)(3x + 2)} = \frac{a}{x - 2} + \frac{b}{3x + 2} $[/tex]

We solve this by partial fraction method.

Taking LCM in the RHS we get,

[tex]$ \frac{3x}{(x - 2)(3x + 2)} = \frac{a(3x + 2) + b(x - 2)}{(x - 2)(3x + 2)} $[/tex]

[tex]$ \implies 3x = a(3x + 2) + b(x - 2) $[/tex]

To find the value of 'a', substitute x = 2. This would make 'b' vanish leaving an equation with 'a'.

[tex]$ \therefore 3(2) = a(3.2 + 2) + b (2 - 2) \implies 6 = a(8) $[/tex]

[tex]$ \implies a = \frac{-2}{3} $[/tex]

Now, Substitute [tex]$ x = \frac{-2}{3} $[/tex] to solve for 'b'.

[tex]$ \implies 3(\frac{-2}{3}) = a (3.\frac{-2}{3} + 2) + b(\frac{-2}{3} -2) $[/tex]

[tex]$ \implies -2 = b \frac{-8}{3} $[/tex]

[tex]$ \implies b = \frac{3}{4} $[/tex]

Therefore, a = [tex]$ \frac{3}{4} $[/tex] and b = [tex]$ \frac{3}{4} $[/tex]

2) Given [tex]$ \frac{3}{x^2 - 5x + 6} = \frac{a}{x - 2} + \frac{b}{x - 3} $[/tex]

We follow the same procedure as (1).

Taking LCM we get

[tex]$ \frac{3}{x^2 - 5x + 6} = \frac{a (x - 3) + b(x - 2)}{(x^2 - 5x + 6)} $[/tex]

[tex]$ \implies 3 = a(x - 3) + b(x - 2) $[/tex]

Substituting x = 2, we get:

3 = a(-1) [tex]$ \implies a = -3 $[/tex]

Also, Substituting x = 3, we get:

3 = b(1)

[tex]$ \implies b = 1 $[/tex]

Therefore, the values of a and b are -1 and 1 respectively.