The ionization constant of water at a temperature above 25°C is 1.7 x 10-14. What is the pH of pure water at this temperature?
2H2O(l)--> H3O+(aq) + OH-(aq)
A) 7.88
B) 5.68
C) 6.88
D) 13.85
E) 7.00

Respuesta :

Answer:

The pH of pure water at this temperature is 6.88.

Explanation:

Ionization constant of water = [tex]K_w=1.7 x 10^{-14}[/tex]

[tex]2H_2O(l)\rightleftharpoons H_3O^+(aq) + OH^-(aq)[/tex]

Water will dissociate into equal amount of hydronium and hydroxide ions

[tex][H_3O^+] = [OH^-]= x[/tex]

[tex]K_w=[H_3O^+]\times [OH^-][/tex]

[tex]K_w=1.7 x 10^{-14}=[H_3O^+]\times [OH^-][/tex]

[tex]1.7 x 10^{-14}=x^2[/tex]

[tex]x=1.304\times 10^{-7}[/tex]

The pH of the solution is a negative logarithm of hydronium ions concentration.

The pH of pure water at this temperature:

[tex]pH=-\log [H_3O^+][/tex]

[tex]pH=-\log (1.304\times 10^{-7})=6.88[/tex]

The pH of pure water is:

C)  6.88.

Calculation for pH:

Ionization constant of water = [tex]1.7 * 10^{-14}[/tex]

Chemical reaction for ionization of water:

[tex]2H_2O(l)---- > H_3O^+(aq) + OH^-(aq)[/tex]

Water dissociates into equal amount of hydronium and hydroxide ions

[tex][H_3O^+]=[OH^-]=x\\\\\K_w=[H_3O^+]*[OH^-]\\\\1.7*10^{-14}=x^2\\\\x=1.307*10^{-7}[/tex]

The pH of the solution is a negative logarithm of hydronium ions concentration.

The pH of pure water at this temperature:

[tex]pH=-log[H_3O^+]\\\\pH=-log(1.304*10^{-7})\\\\pH=6.88[/tex]

Thus, correct option is C.

Find more information about pH here:

brainly.com/question/22390063