The concepts required to solve this problem are the thermodynamic expressions of expansion and linear expansion.
In mathematical terms the dilation of a body can be expressed as
[tex]\Delta L = L_0 \alpha \Delta T[/tex]
Where,
[tex]L_0 =[/tex] Initial Length
[tex]\alpha =[/tex] Thermal coefficient of linear expansion
[tex]\Delta T =[/tex] Change in Length
Our values are given as
[tex]L_0 = 300m[/tex]
[tex]T_f = 25\°C[/tex]
[tex]T_i = 2\°C[/tex]
[tex]\alpha = 12*10^{-6}C^{-1} (Iron)[/tex]
Replacing at the equation we have,
[tex]\Delta L = L_0 \alpha \Delta T[/tex]
[tex]\Delta L = (300)(12*10^{{-6})(25-2)[/tex]
[tex]\Delta L = 0.0828m[/tex]
Therefore the change in the height is 8.28cm