Answer:
EMF, [tex]e = - \mu_{o}ni_{o}A\omegacos\omega t[/tex]
Solution:
As per the question:
Area of the loop is A
No. of turns in the solenoid is n
Current, [tex]i = i_{o}sin\omega t[/tex]
Now, we know that by Faraday's law:
EMF, [tex]e = - \frac{d\phi}{dt}[/tex] (1)
where
[tex]\phi[/tex] = flux linkage
Now,
[tex]\phi = BA[/tex]
where
B = Magnetic Flux
A = Cross-sectional Area
[tex]B = \mu_{o}ni = \mu_{o}ni_{o}sin\omega t[/tex]
[tex]e = - \frac{d}{dt}(BA) = -\frac{d}{dt}(\mu_{o}ni_{o}Asin\omega t)[/tex]
[tex]e = - \frac{d}{dt}(BA) = -\frac{d}{dt}(\mu_{o}ni_{o}Asin\omega t)[/tex]
[tex]e = -\mu_{o}ni_{o}A\frac{d}{dt}(sin\omega t)[/tex]
[tex]e = - \mu_{o}ni_{o}A\omegacos\omega t[/tex]