Answer:
Induced EMF,[tex]\epsilon=0.0143\ volts[/tex]
Explanation:
Given that,
Radius of the circular loop, r = 5 cm = 0.05 m
Time, t = 0.0548 s
Initial magnetic field, [tex]B_i=200\ mT=0.2\ T[/tex]
Final magnetic field, [tex]B_f=300\ mT=0.3\ T[/tex]
The expression for the induced emf is given by :
[tex]\epsilon=\dfrac{d\phi}{dt}[/tex]
[tex]\phi[/tex] = magnetic flux
[tex]\epsilon=\dfrac{d(BA)}{dt}[/tex]
[tex]\epsilon=A\dfrac{d(B)}{dt}[/tex]
[tex]\epsilon=A\dfrac{B_f-B_i}{t}[/tex]
[tex]\epsilon=\pi (0.05)^2\times \dfrac{0.3-0.2}{0.0548}[/tex]
[tex]\epsilon=0.0143\ volts[/tex]
So, the induced emf in the loop is 0.0143 volts. Hence, this is the required solution.