A single-turn circular loop of wire of radius 5.0 cm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.05480.0548-\text{s}s time interval, the magnitude of the field increases uniformly from 200 to 300 mT. Determine the magnitude of the emf induced in the loop.

Respuesta :

Answer:

Induced EMF,[tex]\epsilon=0.0143\ volts[/tex]

Explanation:

Given that,

Radius of the circular loop, r = 5 cm = 0.05 m

Time, t = 0.0548 s

Initial magnetic field, [tex]B_i=200\ mT=0.2\ T[/tex]

Final magnetic field, [tex]B_f=300\ mT=0.3\ T[/tex]

The expression for the induced emf is given by :

[tex]\epsilon=\dfrac{d\phi}{dt}[/tex]

[tex]\phi[/tex] = magnetic flux

[tex]\epsilon=\dfrac{d(BA)}{dt}[/tex]

[tex]\epsilon=A\dfrac{d(B)}{dt}[/tex]

[tex]\epsilon=A\dfrac{B_f-B_i}{t}[/tex]

[tex]\epsilon=\pi (0.05)^2\times \dfrac{0.3-0.2}{0.0548}[/tex]

[tex]\epsilon=0.0143\ volts[/tex]

So, the induced emf in the loop is 0.0143 volts. Hence, this is the required solution.