The hypotenuse of a right triangle has one end at the origin and one end on the curve y = x 2 e −3x , with x ≥ 0. One of the other two sides is on the x-axis, the other side is parallel to the y-axis. Find the maximum area of such a triangle. At what x-value does it occur?

Respuesta :

Answer:

At x = 1 and maximum area  = 0.0499

Step-by-step explanation:

The hypotenuse of a right triangle has one end at the origin and other end on the curve, [tex]y=x^2e^{-3x}[/tex]  with x ≥ 0.

One leg of right triangle is x-axis and another leg parallel to y-axis.

Length of base of right triangle =  x

Height of right triangle = y

Area of right triangle, [tex]A=\dfrac{1}{2}xy[/tex]

[tex]A=\dfrac{1}{2}x^3e^{-3x}[/tex]

For maximum/minimum value of area.

[tex]\dfrac{dA}{dx}=\dfrac{3}{2}x^2e^{-3x}-\dfrac{3}{2}x^3e^{-3x}[/tex]

Now, find critical point, [tex]\dfrac{dA}{dx}=0[/tex]

[tex]\dfrac{3}{2}x^2e^{-3x}-\dfrac{3}{2}x^3e^{-3x}=0[/tex]

[tex]\dfrac{3}{2}x^2e^{-3x}(1-x)=0[/tex]

x =0,1

For x = 0, y = 0

For x = 1, [tex]y=e^{-3}[/tex]

using double derivative test:-

[tex]\dfrac{d^2A}{dx^2}=\dfrac{6}{2}xe^{-3x}-\dfrac{9}{2}x^2e^{-3x}-\dfrac{9}{2}x^2e^{-3x}-\dfrac{9}{2}x^3e^{-3x}[/tex]

At x= 0 , [tex]\dfrac{d^2A}{dx^2}=0[/tex]

Neither maximum nor minimum

At x = 1, [tex]\dfrac{d^2A}{dx^2}=-0.14<0[/tex]

Maximum area at x = 1

The maximum area of right triangle at x = 1

Maximum area, [tex]A=\dfrac{1}{e^3}\approx 0.0499[/tex]

Ver imagen isyllus

The point of maxima will be x=3 and the maximum area will be 0.002 square units.

According to the diagram attached

The area of the given triangle will be = 0.5*base*height

As one end of the hypotenuse is on the curve [tex]y = x^2e^(-3x)[/tex], Coordinates of one end of the hypotenuse will be [tex](x, x^2e^(-3x)[/tex].

Area A(x) of the given triangle = 0.5*base*  height

Base =  x

Height = [tex]x^2e^(-3x)[/tex]

So A(x) = [tex]0.5*x*x^{2} *e^(-3x)[/tex]

[tex]A(x) = 0.5*x*x^{2} *e^(-3x)\\\\A(x) = 0.5 x^3e^(-3x)[/tex]

For the maximum area,

[tex]A'(x) = 0\\\\x^2e^(-3x) (x-3) = 0\\x = 0 and x=3[/tex]will be the points of extremum.

What are the points of the extremum?

Points of extremum are the values of x for which a function f(x) attains a maximum or minimum value.

A(0) = 0

A(3) = 0.002

Therefore, The point of maxima will be x=3, and the maximum area will be 0.002 square units.

To get more about maxima and minima visit:

https://brainly.com/question/6422517

Ver imagen ashishdwivedilVT