Respuesta :
Answer:
At x = 1 and maximum area = 0.0499
Step-by-step explanation:
The hypotenuse of a right triangle has one end at the origin and other end on the curve, [tex]y=x^2e^{-3x}[/tex] with x ≥ 0.
One leg of right triangle is x-axis and another leg parallel to y-axis.
Length of base of right triangle = x
Height of right triangle = y
Area of right triangle, [tex]A=\dfrac{1}{2}xy[/tex]
[tex]A=\dfrac{1}{2}x^3e^{-3x}[/tex]
For maximum/minimum value of area.
[tex]\dfrac{dA}{dx}=\dfrac{3}{2}x^2e^{-3x}-\dfrac{3}{2}x^3e^{-3x}[/tex]
Now, find critical point, [tex]\dfrac{dA}{dx}=0[/tex]
[tex]\dfrac{3}{2}x^2e^{-3x}-\dfrac{3}{2}x^3e^{-3x}=0[/tex]
[tex]\dfrac{3}{2}x^2e^{-3x}(1-x)=0[/tex]
x =0,1
For x = 0, y = 0
For x = 1, [tex]y=e^{-3}[/tex]
using double derivative test:-
[tex]\dfrac{d^2A}{dx^2}=\dfrac{6}{2}xe^{-3x}-\dfrac{9}{2}x^2e^{-3x}-\dfrac{9}{2}x^2e^{-3x}-\dfrac{9}{2}x^3e^{-3x}[/tex]
At x= 0 , [tex]\dfrac{d^2A}{dx^2}=0[/tex]
Neither maximum nor minimum
At x = 1, [tex]\dfrac{d^2A}{dx^2}=-0.14<0[/tex]
Maximum area at x = 1
The maximum area of right triangle at x = 1
Maximum area, [tex]A=\dfrac{1}{e^3}\approx 0.0499[/tex]
The point of maxima will be x=3 and the maximum area will be 0.002 square units.
According to the diagram attached
The area of the given triangle will be = 0.5*base*height
As one end of the hypotenuse is on the curve [tex]y = x^2e^(-3x)[/tex], Coordinates of one end of the hypotenuse will be [tex](x, x^2e^(-3x)[/tex].
Area A(x) of the given triangle = 0.5*base* height
Base = x
Height = [tex]x^2e^(-3x)[/tex]
So A(x) = [tex]0.5*x*x^{2} *e^(-3x)[/tex]
[tex]A(x) = 0.5*x*x^{2} *e^(-3x)\\\\A(x) = 0.5 x^3e^(-3x)[/tex]
For the maximum area,
[tex]A'(x) = 0\\\\x^2e^(-3x) (x-3) = 0\\x = 0 and x=3[/tex]will be the points of extremum.
What are the points of the extremum?
Points of extremum are the values of x for which a function f(x) attains a maximum or minimum value.
A(0) = 0
A(3) = 0.002
Therefore, The point of maxima will be x=3, and the maximum area will be 0.002 square units.
To get more about maxima and minima visit:
https://brainly.com/question/6422517