Answer : The value of [tex]\Delta G_{rxn}[/tex] is, -27.0kJ/mole
Explanation :
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -32.8 kJ
/mol
R = gas constant = 8.314 J/mole.K
T = temperature = 298 K
[tex]K_p[/tex] = equilibrium constant
First we have to calculate the value of [tex]K_p[/tex].
The given balanced chemical reaction is,
[tex]2NO(g)+O_2(g)\rightarrow 2NO_2(g)[/tex]
The expression for equilibrium constant will be :
[tex]K_p=\frac{(p_{NO_2})^2}{(p_{NO})^2\times (p_{O_2})}[/tex]
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Now put all the given values in this expression, we get
[tex]K_p=\frac{(0.800)^2}{(0.500)^2\times (0.250)}[/tex]
[tex]K_p=10.24[/tex]
Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex] by using relation (1).
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex]
Now put all the given values in this formula, we get:
[tex]\Delta G_{rxn}=-32.8kJ/mol+(8.314\times 10^{-3}kJ/mole.K)\times (298K)\ln (10.24)[/tex]
[tex]\Delta G_{rxn}=-27.0kJ/mol[/tex]
Therefore, the value of [tex]\Delta G_{rxn}[/tex] is, -27.0kJ/mole