Answer:
4. 24.39°
5. 27.29°
6. 38.21°
Step-by-step explanation:
Given:
Δ ABC is right angle at A
Δ PQR is right angle at Q
Δ XYZ is right angle at X
To find:
∠ C = ?
∠ P = ?
∠ Z = ?
Solution:
For 4.)
We Know the Identities,
[tex]\sin C = \frac{\textrm{side opposite to angle C}}{Hypotenuse} \\[/tex]
∴ [tex]\sin C=\frac{AB}{BC} \\\sin C =\frac{19}{46} \\\sin C =0.413\\\therefore C= sin^{-1}(0.413)\\ \angle C=24.39\°[/tex]
For 5.)
[tex]\tan P = \frac{\textrm{side opposite to angle P}}{\textrm{side adjacent to angle P}}\\\tan P = \frac{QR}{QP}\\\tan P = \frac{16}{31}\\\tan P = 0.5161\\\angle P=\cos^{-1}(0.5161)\\\angle P=27.29\°[/tex]
For 6.)
[tex]\cos Z = \frac{\textrm{side adjacent to angle Z}}{Hypotenuse}\\\cos Z = \frac{XZ}{YZ}\\\cos Z = \frac{11}{14}\\\cos Z = 0.7857\\\angle Z= \cos^{-1}(0.7857)\\\angle Z= 38.21\°[/tex]