The potential difference V(t) between the parallel plates of a capacitor is instantaneously increasing at a rate of 107 V/s. What is the displacement current (in mA) between the plates if the separation of the plates is 1.06 cm and they have an area of 0.174 m2?

Respuesta :

To solve this problem it is necessary to apply the related concepts to the scalar value of displacement current, which can be expressed in terms of electric flux as

[tex]I_d = \epsilon_0 \frac{d\Phi_E}{dt}[/tex]

Where,

[tex]\epsilon_0[/tex] = Permitibitty of free space constant

[tex]\Phi_E[/tex] = Magnetic flux

t = time

We know as well that the Flux can be expressed as

[tex]\Phi = EA[/tex]

Here

A= Cross-sectional area

E = Electric Potential in a Uniform electric field

At the same time the electric potential is expressed in terms of Voltage and distance, that is

[tex]E = \frac{V}{d}[/tex]

Using this equation we have then that

[tex]I_d = \epsilon_0 \frac{d\Phi_E}{dt}[/tex]

[tex]I_d = \epsilon_0 \frac{d(EA)}{dt}[/tex]

[tex]I_d = \epsilon_0*A (\frac{d(E)}{dt})[/tex]

[tex]I_d = \epsilon_0*A (\frac{d(V)}{dt*d})[/tex]

[tex]I_d = \frac{\epsilon_0*A}{d} (\frac{d(V)}{dt})[/tex]

According to our values we have that

[tex]\frac{dV}{dt} = 107V/s[/tex]

[tex]A = 0.174m^2[/tex]

[tex]d = 1.06*10^{-3}m[/tex]

[tex]\epsilon = 8.85418^{-12} m^{-3}kg^{-1}s^4A^2[/tex]

Replacing,

[tex]I_d = \frac{\epsilon_0*A}{d} (\frac{d(V)}{dt})[/tex]

[tex]I_d = \frac{(8.85418^{-12})*(0.174)}{1.06*10^{-3}} (107)[/tex]

[tex]I_d = 7.565*10^{-8}A[/tex]

Therefore the displacement current is [tex]7.565*10^{-5}mA[/tex]

Lanuel

The displacement current (in mA) between these plates is equal to [tex]1.56 \times 10^{-5}\;mA[/tex]

Given the following data:

  • Rate of increment = 107 V/s.
  • Distance = 1.06 cm to m = [tex]1.06 \times 10^{-2}\;m[/tex]
  • Area = 0.174 [tex]m^2[/tex].

Scientific data:

  • Permittivity of free space = [tex]8.854 \times 10^{-12}[/tex]

How to calculate the displacement current.

Mathematically, the displacement current (in mA) between the plates in an electric field is given by this formula:

[tex]I_d=\frac{\epsilon _o A}{d} (\frac{d(v)}{dt} )\\\\[/tex]

Where:

  • [tex]\epsilon_o[/tex] is the permittivity of free space.
  • d is the distance.
  • A is the area.
  • [tex]\frac{d(v)}{dt}[/tex] is the rate of change.

Substituting the given parameters into the formula, we have;

[tex]I_d=\frac{8.854 \times 10^{-12} \times 0.174 \times 107}{1.06 \times 10^{-2}} \\\\I_d=1.56 \times 10^{-8}\\\\I_d=1.56 \times 10^{-5}\;mA[/tex]

Read more on potential difference here: brainly.com/question/4313738