To solve this problem it is necessary to apply the concepts of thermal expansion. Thermal expansion can be expressed in longitudinal terms such as
[tex]\Delta L = L_0 \alpha \Delta T[/tex]
Where,
[tex]\alpha =[/tex] Thermal Expanssion Coefficient
[tex]L_0 =[/tex] Initial Length
[tex]\Delta T =[/tex] Change in Temperature
Our values are given as
[tex]\alpha = 11*10^{-6}/\°C \rightarrow[/tex] from Steel
[tex]L_0 = 15m[/tex]
[tex]T_1 = -23\°C[/tex]
[tex]T_2 = 32\°C[/tex]
Replacing we have that,
[tex]\Delta L = L_0 \alpha \Delta T[/tex]
[tex]\Delta L = (17)(11*10^{-6})(32-(-21))[/tex]
[tex]\Delta L = 0.009911m[/tex]
[tex]\Delta L = 9.911mm[/tex]
Therefore the difference in length of the beam between these two temperature extremes is 9.911mm