Respuesta :
Answer:
[tex]V_{ft}= 317 cm/s[/tex]
ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:
[tex]P_i = P_f[/tex]
Where:
[tex]P_i=M_cV_{ic} + M_tV_{it}[/tex]
[tex]P_f = M_cV_{fc} + M_tV_{ft}[/tex]
Now:
[tex]M_cV_{ic} + M_tV_{it} = M_cV_{fc} + M_tV_{ft}[/tex]
Where [tex]M_c[/tex] is the mass of the car, [tex]V_{ic}[/tex] is the initial velocity of the car, [tex]M_t[/tex] is the mass of train, [tex]V_{fc}[/tex] is the final velocity of the car and [tex]V_{ft}[/tex] is the final velocity of the train.
Replacing data:
[tex](1.1 kg)(4.95 m/s) + (3.55 kg)(2.2 m/s) = (1.1 kg)(1.8 m/s) + (3.55 kg)V_{ft}[/tex]
Solving for [tex]V_{ft}[/tex]:
[tex]V_{ft}= 3.17 m/s[/tex]
Changed to cm/s, we get:
[tex]V_{ft}= 3.17*100 = 317 cm/s[/tex]
b) The kinetic energy K is calculated as:
K = [tex]\frac{1}{2}MV^2[/tex]
where M is the mass and V is the velocity.
So, the initial K is:
[tex]K_i = \frac{1}{2}M_cV_{ic}^2+\frac{1}{2}M_tV_{it}^2[/tex]
[tex]K_i = \frac{1}{2}(1.1)(4.95)^2+\frac{1}{2}(3.55)(2.2)^2[/tex]
[tex]K_i = 22.06 J[/tex]
And the final K is:
[tex]K_f = \frac{1}{2}M_cV_{fc}^2+\frac{1}{2}M_tV_{ft}^2[/tex]
[tex]K_f = \frac{1}{2}(1.1)(1.8)^2+\frac{1}{2}(3.55)(3.17)^2[/tex]
[tex]K_f = \frac{1}{2}(1.1)(1.8)^2+\frac{1}{2}(3.55)(3.17)^2[/tex]
[tex]K_f = 19.61 J[/tex]
Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J