Answer:
The expression for volume in terms of height 'x' is [tex]V=24(x^2-7x)[/tex].
The height of the box is 15 inches and width is 8 inches.
Step-by-step explanation:
Let the height of the box be 'x'.
Given:
Length of the box is, [tex]l=24\ in[/tex]
Width is 7 less than its height. Therefore, width is, [tex]w=x-7[/tex]
Volume of the box is, [tex]V=2880\ in^3[/tex]
The volume of the box is given as:
[tex]V=lwh\\2880=24\times (x-7)\times x\\x(x-7)=\frac{2880}{24}\\x^2-7x=120\\x^2-7x-120=0[/tex]
The above equation is a standard quadratic equation of the form [tex]ax^2+bx+c=0[/tex]
Here, [tex]a=1,b=-7,c=-120[/tex]
Using the quadratic formula to find the values of 'x', we get:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\x=\frac{-(-7)\pm \sqrt{(-7)^2-4(1)(-120)}}{2(1)}\\x=\frac{7\pm \sqrt{49+480}}{2}\\x=\frac{7\pm \sqrt{529}}{2}\\x=\frac{7\pm 23}{2}\\x=\frac{7-23}{2}\ or\ x=\frac{7+23}{2}\\x=\frac{-16}{2}\ or\ x=\frac{30}{2}\\x=-8\ or\ x=15[/tex]
[tex]x = -8[/tex] is rejected as height can't be negative.
Therefore, the height of the box is 15 in.
Width of the box is, [tex]w=15-7=8\ in[/tex]