Consider the following equilibrium.2 NOBr(g)<=> 2 NO(g) + Br2(g)If nitrosyl bromide, NOBr, is 34 percent dissociated at 25°C and the total pressure is 0.25 atm, calculate Kp and Kc for the dissociation at this temperature.

Respuesta :

Answer:

[tex]K_{p}[/tex] of the reaction is  [tex]9.521 \times 10^{-3}[/tex].

[tex] K_{c}[/tex] of the reaction is  [tex]3.89 \times 10^{-4}[/tex].

Explanation:

Initial pressure of NOBr is "x" atm.

34% = 0.34

The equilibrium chemical reaction is a follows.

       [tex]2NOBr(g)\leftrightarrow 2NO(g)+Br_{2}(g)..............(1)[/tex]

Initial          x                                      0          0

Change    -0.34x                             +0.34x    +0.17x

Final        (x-0.34x)                          +0.34x     +0.17x

Total pressure = sum of the pressure at equilibrium.

[tex]0.25atm=x-0.34x+0.34x+0.17x[/tex]

[tex]0.25atm= 1.17x[/tex]

[tex]x= \frac{0.25}{1.17}=0.213[/tex]

Partial pressure of NOBr=  x-0.34x =x (1-0.34)

= 0.213(0.66) = 0.14 atm.

Hence, partial pressure of [tex][]P_{NOBr}][/tex] is 0.14 atm.

[tex]P_{NO}=0.34x = 0.34 \times 0.213 = 0.072[/tex]

[tex]P_{Br_{2}}=0.17x = 0.17 \times 0.213 = 0.036\,atm[/tex]

From equation (1)

[tex]K_{p}= \frac {P^{2}_{NO} P_{Br_{2}}}{P^{2}_{NOBr}}[/tex]

[tex]= \frac{(0.072)^{2} (0.036)}{(0.14)^{2}}= 9.521 \times 10^{-3}[/tex]

Therefore, [tex]K_{p}[/tex] of the reaction is  [tex]9.521 \times 10^{-3}[/tex].

[tex]K_{p}= K_{c}(RT)^{\Delta n}[/tex]

Rearrange the equation is as follows.

[tex]K_{c}= \frac{K_{p}}{(RT)^{\Delta n}}[/tex]

[tex]\Delta n[/tex] = number of moles of reactants - Number of moles of products

= 3-2 = 1

[tex]= \frac{9.521 \times 10^{-3}}{(0.0821 \times 298)^{1}}= 0.389 \times 10^{-3} = 3.89\times 10^{-4}[/tex]

Therefore,[tex] K_{c}[/tex] of the reaction is  [tex]3.89 \times 10^{-4}[/tex].

The [tex]K_p[/tex] and [tex]K_c[/tex] is " [tex]0.009649615 \ atm[/tex] and [tex]0.00039\ mol\ L^{-1}[/tex]"for the dissociation at this temperature.

Equation:

[tex]2NOBr\rightleftharpoons 2NO+Br_2[/tex]

​When the initial pressure of [tex]NOBr[/tex] is p, then at equilibrium, therefore the dissociation percentage of [tex]NOBr \ \ is\ \ 34\%[/tex]

[tex]\to P(NOBr)=0.66\ p\\\\\to P(NO)=0.34\ p\\\\\to P(Br_2)= \frac{0.34p}{2}=0.17\ p\\\\[/tex]

Calculating the total pressure:

[tex]\to 0.66\ p+0.34\ p+0.17\ p=1.17\ p=0.25\ atm\\\\[/tex]

[tex]\to p=0.214 \ atm\\\\[/tex]

The equilibrium partial pressures:

[tex]\to P(NOBr)=0.66\ p=0.141\ atm\\\\\to P(NO)=0.34\ p=0.073\ atm\\\\\to P(Br_2)=0.17\ p=0.036\ atm\\\\[/tex]

Calculating the [tex]K_p[/tex]:

[tex]\to K_p =\frac{(P_{NO})^2 (P_{Br_2})}{(P_{NOBr})^2}\\\\[/tex]

          [tex]=\frac{(0.073)^2 \times (0.036)}{(0.141)^2}\\\\=\frac{(0.005329) \times (0.036)}{(0.019881)}\\\\=\frac{(0.000191844)}{(0.019881)}\\\\=0.009649615 \ atm[/tex]

Calculating the [tex]K_c[/tex]:

Using formula:

[tex]\to \Delta ng = \text{Number of moles of product - Number of moles of reactant}[/tex]

            [tex]= (2+1) - 2\\\\= 3 - 2\\\\=1 \\[/tex]

The relationship between [tex]K_p[/tex] and [tex]K_c[/tex] is:

[tex]\to K_p = K_C(RT)^{\Delta ng}[/tex]

Hence, by putting the values of  [tex]K_p[/tex], gas constant [tex]R, T,[/tex] and [tex]\Delta ng[/tex], we can calculate the value of [tex]K_c[/tex].

[tex]\to 0.0096\ atm = - K_c(0.0821 \ atm \ mol L^{-1}K^{-1} \times 298 K)^1[/tex]

[tex]\to K_c = \frac{0.0096 }{0.0821\times 298}[/tex]

         [tex]= \frac{0.0096}{ 24.46}\\\\ = 0.00039\ mol\ L^{-1}[/tex]

Therefore, the [tex]K_p[/tex] and [tex]K_c[/tex] is " [tex]0.009649615 \ atm[/tex] and [tex]0.00039\ mol\ L^{-1}[/tex]"for the dissociation at this temperature.

Find out more information about the Nitrosyl bromide here:

brainly.com/question/14954664