Answer:
a)Uo= 2 m/s
b)[tex]u_{avg}=1 \ m/s[/tex]
c)Q=7.54 x 10⁻⁴ m³/s
Explanation:
Given that
[tex]u(r)=2\left(1-\dfrac{r^2}{R^2}\right)[/tex]
Diameter ,D= 3.1 cm
Radius ,R= 1.55 cm
We know that in the pipe flow the general equation for laminar fully developed flow given as
[tex]u(r)=U_o\left(1-\dfrac{r^2}{R^2}\right)[/tex]
Uo=Maximum velocity
Therefore maximum velocity
Uo= 2 m/s
The average velocity
[tex]u_{avg}=\dfrac{U_o}{2}[/tex]
[tex]u_{avg}=\dfrac{2}{2}\ m/s[/tex]
[tex]u_{avg}=1 \ m/s[/tex]
The volume flow rate
[tex]Q=u_{avg}. A[/tex]
[tex]Q=\pi R^2\times u_{avg}\ m^3/s[/tex]
[tex]Q=\pi \times (1.55\times 10^{-2})^2\times 1\ m^3/s[/tex]
Q=0.000754 m³/s
Q=7.54 x 10⁻⁴ m³/s