Answer: The binding energy of the given nucleus is 7.88 MeV/nucleon
Explanation:
Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.
We are given a nucleus having representation: [tex]_{82}^{206}\textrm{Pb}[/tex]
Number of protons = 82
Number of neutrons = 206 - 82 = 124
To calculate the mass defect of the nucleus, we use the equation:
[tex]\Delta m=[(n_p\times m_p)+(n_n\times m_n)-M[/tex]
where,
[tex]n_p[/tex] = number of protons = 82
[tex]m_p[/tex] = mass of one proton = 1.007825 amu
[tex]n_n[/tex] = number of neutrons = 124
[tex]m_n[/tex] = mass of one neutron = 1.008665 amu
M = nuclear mass = 205.974440 amu
Putting values in above equation, we get:
[tex]\Delta m=[(82\times 1.007825)+(124\times 1.008665)]-205.974440\\\\\Delta m=1.74167amu[/tex]
To calculate the binding energy of the nucleus, we use the equation:
[tex]E=\Delta mc^2\\E=(1.74167u)\times c^2[/tex]
[tex]E=(1.74167u)\times (931.5MeV)=1622.36MeV[/tex] (Conversion factor: [tex]1u=931.5MeV/c^2[/tex] )
Number of nucleons in [tex]_{26}^{56}\textrm{Fe}[/tex] atom = 206
To calculate the binding energy per nucleon, we divide the binding energy by the number of nucleons, we get:
[tex]\text{Binding energy per nucleon}=\frac{\text{Binding energy}}{\text{Nucleons}}[/tex]
[tex]\text{Binding energy per nucleon}=\frac{1622.36MeV}{206}=7.88MeV/nucleon[/tex]
Hence, the binding energy of the given nucleus is 7.88 MeV/nucleon