calculate the density of a neutron star with a radius 1.05 x10^4 m, assuming the mass is distributed uniformly. Treat the neutron star as a giant ucleaus and consider the mass of a nucleon 1.675 x 10^-27 kg. Your answer should be in the form of N x 10^17 kg/m^3. Enter onlt the number N with teo decimal places, do not enter unit.

Respuesta :

To develop this problem it is necessary to apply the concepts related to the proportion of a neutron star referring to the sun and density as a function of mass and volume.

Mathematically it can be expressed as

[tex]\rho = \frac{m}{V}[/tex]

Where

m = Mass (Neutron at this case)

V = Volume

The mass of the neutron star is 1.4times to that of the mass of the sun

The volume of a sphere is determined by the equation

[tex]V = \frac{4}{3}\pi R^3[/tex]

Replacing at the equation we have that

[tex]\rho = \frac{1.4m_{sun}}{\frac{4}{3}\pi R^3}[/tex]

[tex]\rho = \frac{1.4(1.989*10^{30})}{\frac{4}{3}\pi (1.05*10^4)^3}[/tex]

[tex]\rho = 5.75*10^{17}kg/m^3[/tex]

Therefore the density of a neutron star is [tex] 5.75*10^{17}kg/m^3[/tex]