Answer:
[tex]I=5369.375[/tex]
Explanation:
Given:
Considering merry-go-round as a disk, its moment of inertia is given as:
[tex]I_d=\frac{1}{2} M.r^2[/tex]
[tex]I_d=0.5\times 155\times 5.5^2[/tex]
[tex]I_d=2344.375\ kg.m^2[/tex]
Considering children as point masses, their moment of inertia is given as:
[tex]I_C=5(m.r^2)[/tex]
since there are 5 children
[tex]I_C=5\times20\times 5.5^2[/tex]
[tex]I_C=3025\ kg.m^2[/tex]
Now, total moment of inertia:
[tex]I=I_C+I_d[/tex]
[tex]I=3025+2344.375[/tex]
[tex]I=5369.375[/tex]