Respuesta :
Answer:
0.38°
Explanation:
[tex]\theta[/tex] = Angle
m = Number
d = Distance
n = Refractive index of liquid = 1.25
a denotes air
l denotes liquid
In the case of double split interferance we have the relation
[tex]m\lambda=dsin\theta[/tex]
For air
[tex]m\lambda_a=dsin\theta_a[/tex]
For liquid
[tex]m\lambda_l=dsin\theta_l[/tex]
Dividing the two equations
[tex]\frac{m\lambda_a}{m\lambda_l}=\frac{dsin\theta_a}{dsin\theta_l}\\\Rightarrow \frac{\lambda_a}{\lambda_l}=\frac{sin\theta_a}{sin\theta_l}[/tex]
Wavelength ratio = [tex]n[/tex]
[tex]n=\frac{sin\theta_a}{sin\theta_l}\\\Rightarrow \frac{sin0.48}{1.25}=sin\theta_l\\\Rightarrow \theta_l=sin^{-1}\frac{sin0.48}{1.25}\\\Rightarrow \theta_l=0.38^{\circ}[/tex]
The angular separation is 0.38°
Answer:
0.384°
Explanation:
λ = 589 nm
θ = 0.48°
n = 1.25
When the arrangemnet is immeresed in the liquid, then the wavelength of light is chnaged.
let the new wavelength is λ'
λ' = λ/n 589 / 1.25 = 471.2 nm
λo, the new fringe separation is θ'
So. θ' / θ = λ' / λ
θ' / 0.48 = 471.2 / 589
θ' = 0.384°
Thus, the new fringe separation is 0.384°.