Respuesta :
Answer:
The wavelength of the light is 530 nm.
Explanation:
Given that,
Distance D= 1.0 m
Distance between slits d= 0.30 mm
Number of fringe = 9
Width = 1.6 cm
We need to calculate the angle
Using formula of angle
[tex]\tan\theta=\dfrac{y}{D}[/tex]
[tex]tan\theta=\dfrac{1.6\times10^{-2}}{1.0}[/tex]
[tex]\theta=\tan^{-1}(\dfrac{1.6\times10^{-2}}{1.0})[/tex]
[tex]\theta=0.91^{\circ}[/tex]
We need to calculate the wavelength of the light
Using formula of wavelength
[tex]d\sin\theta=m\lambda[/tex]
[tex]\lambda=\dfrac{d\sin\theta}{m}[/tex]
Put the value into the formula
[tex]\lambda= \dfrac{0.30\times10^{-3}\times\sin0.91}{9}[/tex]
[tex]\lambda=5.29\times10^{-7}\ m[/tex]
[tex]\lambda=530\ nm[/tex]
Hence, The wavelength of the light is 530 nm.
Answer:
530 nm
Explanation:
Screen distance, D = 1 m
slit distance, d = 0.3 mm
n = 9 th bright
y = 1.6 cm
Let λ be the wavelength of light used.
y = n x D x λ / d
1.6 x 10^-2 = 9 x 1 x λ / (0.3 x 10^-3)
λ = 5.3333 x 10^-7 m
λ = 533.33 nm
λ = 530 nm ( by rounding off)