Answer: (1124.5619, 1315.4381)
Step-by-step explanation:
The confidence interval for population mean[tex](\mu)[/tex] when populatin standard deviation is unknown :-
[tex]\overline{x}\pm t^*\dfrac{s}{\sqrt{n}}[/tex]
, where [tex]\overline{x}[/tex] = Sample mean
[tex]s[/tex] =Sample standard deviation
t* = Critical t-value.
Given : n= 300
Degree of freedom : df = n-1 = 299
[tex]\overline{x}=1220[/tex]
[tex]s=840[/tex]
Confidence interval = 95%
Significance level : [tex]\alpha=1-0.95=0.05[/tex]
Using t-distribution table ,
The critical value for 95% Confidence interval for significance level 0.05 and df = 299 : [tex]t^*=t_{\alpha/2,\ df}=t_{0.025,\ 299}=1.9679[/tex]
Then, a 95% confidence interval estimate of the average debt of all cardholders will be :-
[tex]1220\pm (1.9679)\dfrac{840}{\sqrt{300}}[/tex]
[tex]=1220\pm (1.9679)\dfrac{840}{17.3205080757}[/tex]
[tex]=1220\pm (1.9679)(48.4974226119)[/tex]
[tex]\approx1220\pm 95.4381=(1220-95.438,\ 1220+95.438)\\\\=(1124.5619,\ 1315.4381)[/tex]
Hence, a 95% confidence interval estimate of the average debt of all cardholders is (1124.5619, 1315.4381) .