A certain radioactive nuclide decays with a disintegration constant of 0.0178 h-1.

(a) Calculate the half-life of this nuclide.

What fraction of a sample will remain at the end of (b) 4.44 half-lives and (c) 14.6 days?

Respuesta :

Explanation:

Given that,

The disintegration constant of the nuclide, [tex]\lambda=0.0178\ h^{-1}[/tex]

(a) The half life of this nuclide is given by :

[tex]t_{1/2}=\dfrac{ln(2)}{\lambda}[/tex]

[tex]t_{1/2}=\dfrac{ln(2)}{0.0178}[/tex]

[tex]t_{1/2}=38.94\ h[/tex]

(b) The decay equation of any radioactive nuclide is given by :

[tex]N=N_oe^{-\lambda t}[/tex]

[tex]\dfrac{N}{N_o}=e^{-\lambda t}[/tex]

Number of remaining sample in 4.44 half lives is :

[tex]t_{1/2}=4.44\times 38.94[/tex]

[tex]t_{1/2}=172.89\ h^{-1}[/tex]

So, [tex]\dfrac{N}{N_o}=e^{-0.0178\times 172.89}[/tex]

[tex]\dfrac{N}{N_o}=0.046[/tex]

(c) Number of remaining sample in 14.6 days is :

[tex]t_{1/2}=14.6\times 24[/tex]

[tex]t_{1/2}=350.4\ h^{-1}[/tex]

So, [tex]\dfrac{N}{N_o}=e^{-0.0178\times 350.4}[/tex]

[tex]\dfrac{N}{N_o}=0.0019[/tex]

Hence, this is the required solution.