Answer:
The value of positive integers are 21.22 and 12.11
Step-by-step explanation:
Given as :
The sum of squares of two integer = 698
Let The one positive integer be x
And The other positive integer be y
According to question
one positive integer = 3 less than twice the other positive integer
So, x = 2 × y - 3
I.e x = 2 y - 3
And x² + y² = 698
So, Put the value of x
I.e ( 2 y - 3 )² + y² = 698
or, 4 y² + 9 - 12 y + y² = 698
Or, 5 y² - 3 y - 698 = 0
Now solving this quadratic equation
y = [tex]\frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}[/tex]
Or, y = [tex]\frac{3\pm \sqrt{-3^{2}-4\times 5\times -698}}{2\times 5}[/tex]
Or, y = [tex]\frac{3\pm \sqrt{13969}}{10}[/tex]
Or, y = [tex]\frac{3\pm 118.19}{10}[/tex]
∴ y = 12.11 , - 11.51
So , The value of y = 12.11
And the value of x = 2 × 12.11 - 3
I.e x = 21.22
Hence The value of positive integers are 21.22 and 12.11 Answer