Respuesta :

The question is incomplete. The complete question is attached below.

Answer:

(a). AB = 16.4 in

(b) BC = 11.5 in

Step-by-step explanation:

From the rectangle ABCD shown below,

AB is the base of rectangle and CB is the altitude of the rectangle.

Given:

AC = 20 in

(a)

From triangle ABC,

Applying cosine ratio for angle 35°, we get:

[tex]\cos(35)=\frac{AB}{AC}\\AB=AC\times \cos(35)\\AB=20\times \cos(35)=16.38\approx 16.4\ in[/tex]

Therefore, AB = 16.4 in

(b)

Applying sine ratio for angle 35°, we get:

[tex]\sin(35)=\frac{CB}{AC}\\CB=AC\times \sin(35)\\AB=20\times \sin(35)=11.47\approx 11.5\ in[/tex]

Therefore, CB = 11.5 in

Ver imagen DarcySea
Ver imagen DarcySea