Answer:
The [SO₃²⁻]
Explanation:
From the first dissociation of sulfurous acid we have:
H₂SO₃(aq) ⇄ H⁺(aq) + HSO₃⁻(aq)
At equilibrium: 0.50M - x x x
The equilibrium constant (Ka₁) is:
[tex] K_{a1} = \frac{[H^{+}] [HSO_{3}^{-}]}{[H_{2}SO_{3}]} = \frac{x\cdot x}{0.5 - x} = \frac {x^{2}}{0.5 -x} [/tex]
With Ka₁= 1.5x10⁻² and solving the quadratic equation, we get the following HSO₃⁻ and H⁺ concentrations:
[tex] [HSO_{3}^{-}] = [H^{+}] = 7.94 \cdot 10^{-2}M [/tex]
Similarly, from the second dissociation of sulfurous acid we have:
HSO₃⁻(aq) ⇄ H⁺(aq) + SO₃²⁻(aq)
At equilibrium: 7.94x10⁻²M - x x x
The equilibrium constant (Ka₂) is:
[tex] K_{a2} = \frac{[H^{+}] [SO_{3}^{2-}]}{[HSO_{3}^{-}]} = \frac{x^{2}}{7.94 \cdot 10^{-2} - x} [/tex]
Using Ka₂= 6.3x10⁻⁸ and solving the quadratic equation, we get the following SO₃⁻ and H⁺ concentrations:
[tex] [SO_{3}^{2-}] = [H^{+}] = 7.07 \cdot 10^{-5}M [/tex]
Therefore, the final concentrations are:
[H₂SO₃] = 0.5M - 7.94x10⁻²M = 0.42M
[HSO₃⁻] = 7.94x10⁻²M - 7.07x10⁻⁵M = 7.93x10⁻²M
[SO₃²⁻] = 7.07x10⁻⁵M
[H⁺] = 7.94x10⁻²M + 7.07x10⁻⁵M = 7.95x10⁻²M
So, the lowest concentration at equilibrium is [SO₃²⁻] = 7.07x10⁻⁵M.
I hope it helps you!