The dissociation of sulfurous acid (H2SO3) in aqueous solution occurs as follows:
H2SO3 ---> H+ + HSO3-
HSO3- ---> H+ + SO32-
If .50 moles of sulfurous acid are dissolved to form a 1 L solution, which of the following concentrations will be LEAST at equilibrium?
A.) [H2SO3]
B.) [H+]
C.) [H3O+]
D.) [SO32-]

Respuesta :

Answer:

The [SO₃²⁻]

Explanation:

From the first dissociation of sulfurous acid we have:

                         H₂SO₃(aq) ⇄ H⁺(aq) + HSO₃⁻(aq)

At equilibrium:  0.50M - x          x            x

The equilibrium constant (Ka₁) is:

[tex] K_{a1} = \frac{[H^{+}] [HSO_{3}^{-}]}{[H_{2}SO_{3}]} = \frac{x\cdot x}{0.5 - x} = \frac {x^{2}}{0.5 -x} [/tex]

With Ka₁= 1.5x10⁻² and solving the quadratic equation, we get the following HSO₃⁻ and H⁺ concentrations:

[tex] [HSO_{3}^{-}] = [H^{+}] = 7.94 \cdot 10^{-2}M [/tex]

Similarly, from the second dissociation of sulfurous acid we have:

                              HSO₃⁻(aq) ⇄ H⁺(aq) + SO₃²⁻(aq)

At equilibrium:  7.94x10⁻²M - x          x            x

The equilibrium constant (Ka₂) is:  

[tex] K_{a2} = \frac{[H^{+}] [SO_{3}^{2-}]}{[HSO_{3}^{-}]} = \frac{x^{2}}{7.94 \cdot 10^{-2} - x} [/tex]  

Using Ka₂= 6.3x10⁻⁸ and solving the quadratic equation, we get the following SO₃⁻ and H⁺ concentrations:

[tex] [SO_{3}^{2-}] = [H^{+}] = 7.07 \cdot 10^{-5}M [/tex]

Therefore, the final concentrations are:

[H₂SO₃] = 0.5M - 7.94x10⁻²M = 0.42M

[HSO₃⁻] = 7.94x10⁻²M - 7.07x10⁻⁵M = 7.93x10⁻²M

[SO₃²⁻] = 7.07x10⁻⁵M

[H⁺] = 7.94x10⁻²M + 7.07x10⁻⁵M = 7.95x10⁻²M

So, the lowest concentration at equilibrium is [SO₃²⁻] = 7.07x10⁻⁵M.

I hope it helps you!