Respuesta :
Answer:
(a) 0.28347
(b) 0.36909
(c) 0.0039
(d) 0.9806
Step-by-step explanation:
Given information:
n=12
p = 20% = 0.2
q = 1-p = 1-0.2 = 0.8
Binomial formula:
[tex]P(x=r)=^nC_rp^rq^{n-r}[/tex]
(a) Exactly two will be drunken drivers.
[tex]P(x=2)=^{12}C_{2}(0.2)^{2}(0.8)^{12-2}[/tex]
[tex]P(x=2)=66(0.2)^{2}(0.8)^{10}[/tex]
[tex]P(x=2)=\approx 0.28347[/tex]
Therefore, the probability that exactly two will be drunken drivers is 0.28347.
(b)Three or four will be drunken drivers.
[tex]P(x=3\text{ or }x=4)=P(x=3)\cup P(x=4)[/tex]
[tex]P(x=3\text{ or }x=4)=P(x=3)+P(x=4)[/tex]
Using binomial we get
[tex]P(x=3\text{ or }x=4)=^{12}C_{3}(0.2)^{3}(0.8)^{12-3}+^{12}C_{4}(0.2)^{4}(0.8)^{12-4}[/tex]
[tex]P(x=3\text{ or }x=4)=0.236223+0.132876[/tex]
[tex]P(x=3\text{ or }x=4)\approx 0.369099[/tex]
Therefore, the probability that three or four will be drunken drivers is 0.3691.
(c)
At least 7 will be drunken drivers.
[tex]P(x\geq 7)=1-P(x<7)[/tex]
[tex]P(x\leq 7)=1-[P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)+P(x=6)][/tex]
[tex]P(x\leq 7)=1-[0.06872+0.20616+0.28347+0.23622+0.13288+0.05315+0.0155][/tex]
[tex]P(x\leq 7)=1-[0.9961][/tex]
[tex]P(x\leq 7)=0.0039[/tex]
Therefore, the probability of at least 7 will be drunken drivers is 0.0039.
(d) At most 5 will be drunken drivers.
[tex]P(x\leq 5)=P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)[/tex]
[tex]P(x\leq 5)=0.06872+0.20616+0.28347+0.23622+0.13288+0.05315[/tex]
[tex]P(x\leq 5)=0.9806[/tex]
Therefore, the probability of at most 5 will be drunken drivers is 0.9806.