contestada

The maximum distance from the Earth to the Sun (at aphelion) is 1.521 1011 m, and the distance of closest approach (at perihelion) is 1.471 1011 m. The Earth's orbital speed at perihelion is 3.027 104 m/s. Ignore the effect of the Moon and other planets. (a) Determine the Earth's orbital speed at aphelion. m/s (b) Determine the kinetic and potential energies of the Earth–Sun system at perihelion. Kp = J Up = J (c) Determine the kinetic and potential energies at aphelion. Ka = J Ua = J (d)Is the total energy constant

Respuesta :

Answer:

29274.93096 m/s

[tex]2.73966\times 10^{33}\ J[/tex]

[tex]-5.39323\times 10^{33}\ J[/tex]

[tex]2.56249\times 10^{33}\ J[/tex]

[tex]-5.21594\times 10^{33}[/tex]

Explanation:

[tex]r_p[/tex] = Distance at perihelion = [tex]1.471\times 10^{11}\ m[/tex]

[tex]r_a[/tex] = Distance at aphelion = [tex]1.521\times 10^{11}\ m[/tex]

[tex]v_p[/tex] = Velocity at perihelion = [tex]3.027\times 10^{4}\ m/s[/tex]

[tex]v_a[/tex] = Velocity at aphelion

m = Mass of the Earth =  5.98 × 10²⁴ kg

M = Mass of Sun = [tex]1.9889\times 10^{30}\ kg[/tex]

Here, the angular momentum is conserved

[tex]L_p=L_a\\\Rightarrow r_pv_p=r_av_a\\\Rightarrow v_a=\frac{r_pv_p}{r_a}\\\Rightarrow v_a=\frac{1.471\times 10^{11}\times 3.027\times 10^{4}}{1.521\times 10^{11}}\\\Rightarrow v_a=29274.93096\ m/s[/tex]

Earth's orbital speed at aphelion is 29274.93096 m/s

Kinetic energy is given by

[tex]K=\frac{1}{2}mv_p^2\\\Rightarrow K=\frac{1}{2}\times 5.98\times 10^{24}(3.027\times 10^{4})^2\\\Rightarrow K=2.73966\times 10^{33}\ J[/tex]

Kinetic energy at perihelion is [tex]2.73966\times 10^{33}\ J[/tex]

Potential energy is given by

[tex]P=-\frac{GMm}{r_p}\\\Rightarrow P=-\frac{6.67\times 10^{-11}\times 1.989\times 10^{30}\times 5.98\times 10^{24}}{1.471\times  10^{11}}\\\Rightarrow P=-5.39323\times 10^{33}[/tex]

Potential energy at perihelion is [tex]-5.39323\times 10^{33}\ J[/tex]

[tex]K=\frac{1}{2}mv_a^2\\\Rightarrow K=\frac{1}{2}\times 5.98\times 10^{24}(29274.93096)^2\\\Rightarrow K=2.56249\times 10^{33}\ J[/tex]

Kinetic energy at aphelion is [tex]2.56249\times 10^{33}\ J[/tex]

Potential energy is given by

[tex]P=-\frac{GMm}{r_a}\\\Rightarrow P=-\frac{6.67\times 10^{-11}\times 1.989\times 10^{30}\times 5.98\times 10^{24}}{1.521\times 10^{11}}\\\Rightarrow P=-5.21594\times 10^{33}[/tex]

Potential energy at aphelion is [tex]-5.21594\times 10^{33}\ J[/tex]

Answer:

:) *_* :3 ^-^ {.}{.}

Explanation: